4594 measured reflections

 $R_{\rm int} = 0.022$

3074 independent reflections

2306 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[diaquacalcium(II)]-di-μ-2-chloronicotinato]

Li Quan, Handong Yin,* Liansheng Cui and Minglei Yang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 15 November 2008; accepted 31 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.145; data-to-parameter ratio = 14.8.

The itle compound, $[Ca(C_6H_3CINO_2)_2(H_2O)_2]_n$, contains polymeric chains extending along [100] that are generated by inversion centres. The Ca²⁺ ions are bridged by 2chloronicotinate groups and exhibit an eight-coordination by six carboxylate O atoms of four different 2-chloronicotinate ligands and two O atoms of water molecules. In the crystal structure, intermolecular O-H···O, O-H···N and C-H···O hydrogen bonds result in the formation of a supramolecular network structure. The π - π contacts between the 2chloronicotinate rings [centroid–centroid distances = 3.875 (3) and 3.701 (3) Å] may further stabilize the structure.

Related literature

For general background, see: Schmidbaur *et al.* (1989, 1990). For related structures, see: Murugavel & Banerjee (2003); Radanovic *et al.* (2004). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{bmatrix} Ca(C_6H_3CINO_2)_2(H_2O)_2 \end{bmatrix} & \gamma = 97.289 (1)^{\circ} \\ M_r = 389.20 & V = 896.4 (2) \text{ Å}^3 \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 7.8363 (10) \text{ Å} & \text{Mo } K\alpha \text{ radiation} \\ b = 10.8421 (16) \text{ Å} & \mu = 0.68 \text{ mm}^{-1} \\ c = 10.8834 (16) \text{ Å} & T = 298 (2) \text{ K} \\ \alpha = 98.455 (2)^{\circ} & 0.48 \times 0.40 \times 0.30 \text{ mm} \\ \beta = 97.610 (1)^{\circ} \\ \end{bmatrix}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.738, T_{max} = 0.823$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	208 parameters
$vR(F^2) = 0.145$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
074 reflections	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ca1-O4 ⁱ	2.366 (3)	Ca1-O6	2.393 (3)
Ca1-O5	2.373 (3)	Ca1-O2 ⁱⁱ	2.461 (3)
Ca1-O1	2.375 (2)	Ca1-O1 ⁱⁱ	2.641 (3)
Ca1-O3	2.391 (3)	Ca1-O4	2.734 (3)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y, -z + 1.

Table 2Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$
) 171
) 162
) 173
) 165
) 166

Symmetry codes: (ii) -x + 2, -y, -z + 1; (iii) x, y - 1, z; (iv) -x + 2, -y, -z + 2; (v) x - 1, y, z.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors acknowledge the National Natural Science Foundation of China (grant Nos. 20771053 and 20773059).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2578).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Brandenburg, K. (1998). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.

Murugavel, R. & Banerjee, S. (2003). Inorg. Chem. Commun. 6, 810-814.

Radanovic, D. D., Rychlewska, U., Djuran, M. I., Warzajtis, B., Draskovic, N. S. & Gures, D. M. (2004). Polyhedron, 23, 2183–2192. Schmidbaur, H., Bach, I., Wilkinson, D. L. & Muller, G. (1989). Chem. Ber. 122, 1439–1444.

Schmidbaur, H., Classen, H. G. & Helbig, J. (1990). Angew. Chem. Int. Ed. Engl. 29, 1090–1103.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. supplementary materials

Acta Cryst. (2009). E65, m167-m168 [doi:10.1107/S1600536808044267]

catena-Poly[[diaquacalcium(II)]-di-µ-2-chloronicotinato]

L. Quan, H. Yin, L. Cui and M. Yang

Comment

Chemistry of alkaline earth metals is an unexplored area. The model complexes containing Mg^{2+} and Ca^{2+} cations have previously been prepared and used as probes for understanding the binding modes of these metals (Schmidbaur *et al.*, 1989, 1990). In our ongoing studies with 2-chloronicotinate ligand and s-block metal ions, the title compound has been synthesized, and we report herein its crystal structure.

In the molecule of the title compound, (I), (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. It has an inversion centre midway between the two Ca^{II} ions, which are bridged by 2-chloronicotinate groups. Each Ca atom is eight-coordinated by six O atoms of 2-chloronicotinate ligands and two O atoms of water molecules. It essentially forms a one-dimensional chain structure (Fig. 2). The Ca—O bonds are in the range of [2.366 (3)-2.734 (3) Å] (Table 1). The average value of the Ca—O bonds [2.467 (3) Å] is almost the same with the corresponding values [2.4674 (9) Å] in $[Ca(3-aba)_2(H_2O)_2]_n$ (where 3-aba is 3-aminobenzoic acid), (II) (Murugavel & Banerjee, 2003) and [2.4556 (8) Å] in $[Ca(H_2O)_3Ca(1,3-pdta)-(H_2O)]$. 2(H₂O) (where 1,3-pdta is the 1,3-propanediaminetetraacetate ion), (III) (Radanovic *et al.*, 2004). The Ca1—Ca1ⁱ [4.0553 (14) Å] and Ca1—Ca1ⁱⁱ [4.0681 (14) Å] [symmetry codes: (i) 1 - x, -y, 1 - z, (ii) 2 - x, -y, 1 - z] distances are longer than the corresponding value [4.0034 (5) Å] in (II).

In the crystal structure, intermolecular O—H···O, O—H···N and C—H···O hydrogen bonds (Table 2) result in the formation of a supramolecular network structure. The π - π contacts between the 2-chloronicotinate rings, Cg1–Cg1ⁱ and Cg2–Cg2ⁱⁱ [symmetry codes: (i) -x, 2 - y, -z; (ii) 1 - x, 1 - y, 1 - z, where Cg1 and Cg2 are centroids of the rings A (N1/C2–C6) and B (N2/C8–C12), respectively] may further stabilize the structure, with centroid–centroid distances of 3.875 (3) Å and 3.701 (3) Å.

Experimental

For the preparation of the title compound, $CaCl_2(H_2O)_2$ (0.588 g, 4 mmol) and 2-chloronicotinic acid (0.044 g, 0.4 mmol) were dissolved in H_2O (20 ml) and MeOH (30 ml) by refluxing for 30 min. Sodium methoxide (0.4 mmol, 0.8 ml) was added dropwise by stirring. After refluxing for 8 h, the colorless solution was obtained, and then filtered. The solvent was gradually removed by evaporation under vacuum until the colorless solid was obtained, which was recrystallized from petroleum ether–dichoromethane (1:1) to give the block-shaped colorless crystals.

Refinement

H atoms were positioned geometrically, with O—H = 0.85 Å (for H₂O) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A partial packing diagram of the title compound, showing the formation of the one dimensional chain structure.

catena-Poly[[diaquacalcium(II)]-di-µ-2-chloronicotinato]

 $[Ca(C_6H_3CINO_2)_2(H_2O)_2]$ Z = 2 $M_r = 389.20$ $F_{000} = 396$ $D_{\rm x} = 1.442 \ {\rm Mg \ m}^{-3}$ Triclinic, PT Mo Kα radiation Hall symbol: -P 1 $\lambda = 0.71073 \text{ Å}$ *a* = 7.8363 (10) Å Cell parameters from 2126 reflections *b* = 10.8421 (16) Å $\theta = 2.5 - 27.6^{\circ}$ c = 10.8834 (16) Å $\mu = 0.68 \text{ mm}^{-1}$ $\alpha = 98.455 (2)^{\circ}$ T = 298 (2) K $\beta = 97.610 (1)^{\circ}$ Block, colourless $\gamma = 97.289 (1)^{\circ}$ $0.48 \times 0.40 \times 0.30 \text{ mm}$ $V = 896.4 (2) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer	3074 independent reflections
Radiation source: fine-focus sealed tube	2306 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.738, T_{\max} = 0.823$	$k = -11 \rightarrow 12$
4594 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.072P)^2 + 0.8771P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
3074 reflections	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$
208 parameters	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ca1	0.75350 (8)	-0.02117 (7)	0.54151 (6)	0.0273 (2)
C11	1.31442 (17)	-0.08155 (14)	0.89399 (12)	0.0688 (4)
Cl2	0.85580 (16)	0.45842 (12)	0.62037 (12)	0.0642 (4)
N1	1.2104 (5)	0.0770 (5)	1.0606 (3)	0.0597 (11)
N2	0.7024 (5)	0.5552 (3)	0.4414 (4)	0.0521 (9)
01	1.0474 (3)	0.0510 (2)	0.6352 (2)	0.0363 (6)
O2	1.3309 (3)	0.1026 (3)	0.6846 (2)	0.0468 (7)
O3	0.8087 (3)	0.1815 (3)	0.4807 (3)	0.0501 (8)
O4	0.5271 (3)	0.1368 (3)	0.4706 (3)	0.0447 (7)
O5	0.8604 (3)	-0.2084 (2)	0.5835 (2)	0.0395 (6)
H5B	0.9605	-0.2092	0.5617	0.047*
H5C	0.7926	-0.2722	0.5410	0.047*
O6	0.6803 (4)	0.0628 (3)	0.7404 (3)	0.0539 (8)
H6B	0.7060	0.0164	0.7946	0.065*
H6C	0.5721	0.0672	0.7340	0.065*
C1	1.1815 (5)	0.0877 (4)	0.7134 (3)	0.0336 (8)
C2	1.2213 (5)	0.0517 (4)	0.9394 (4)	0.0447 (10)
C3	1.1612 (5)	0.1197 (4)	0.8500 (3)	0.0392 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

1.0797 (6)	0.2201 (5)	0.8907 (4)	0.0574 (12)
1.0330	0.2677	0.8339	0.069*
1.0684 (7)	0.2488 (6)	1.0167 (5)	0.0694 (15)
1.0168	0.3176	1.0462	0.083*
1.1333 (6)	0.1758 (6)	1.0973 (4)	0.0644 (14)
1.1235	0.1957	1.1819	0.077*
0.6592 (5)	0.2077 (3)	0.4592 (4)	0.0335 (8)
0.7209 (5)	0.4468 (4)	0.4786 (4)	0.0404 (9)
0.6374 (4)	0.3299 (3)	0.4140 (4)	0.0334 (8)
0.5307 (5)	0.3306 (4)	0.3029 (4)	0.0491 (11)
0.4696	0.2553	0.2566	0.059*
0.5145 (6)	0.4422 (5)	0.2605 (5)	0.0595 (13)
0.4454	0.4430	0.1844	0.071*
0.6014 (6)	0.5528 (5)	0.3319 (5)	0.0598 (13)
0.5896	0.6283	0.3031	0.072*
	1.0797 (6) 1.0330 1.0684 (7) 1.0168 1.1333 (6) 1.1235 0.6592 (5) 0.7209 (5) 0.6374 (4) 0.5307 (5) 0.4696 0.5145 (6) 0.4454 0.6014 (6) 0.5896	1.0797(6) $0.2201(5)$ 1.0330 0.2677 $1.0684(7)$ $0.2488(6)$ 1.0168 0.3176 $1.1333(6)$ $0.1758(6)$ 1.1235 0.1957 $0.6592(5)$ $0.2077(3)$ $0.7209(5)$ $0.4468(4)$ $0.6374(4)$ $0.3299(3)$ $0.5307(5)$ $0.3306(4)$ 0.44696 0.2553 $0.5145(6)$ $0.4422(5)$ 0.4454 0.4430 $0.6014(6)$ $0.5528(5)$ 0.5896 0.6283	1.0797(6) $0.2201(5)$ $0.8907(4)$ 1.0330 0.2677 0.8339 $1.0684(7)$ $0.2488(6)$ $1.0167(5)$ 1.0168 0.3176 1.0462 $1.1333(6)$ $0.1758(6)$ $1.0973(4)$ 1.1235 0.1957 1.1819 $0.6592(5)$ $0.2077(3)$ $0.4592(4)$ $0.7209(5)$ $0.4468(4)$ $0.4786(4)$ $0.6374(4)$ $0.3299(3)$ $0.4140(4)$ $0.5307(5)$ $0.3306(4)$ $0.3029(4)$ 0.4696 0.2553 0.2566 $0.5145(6)$ 0.4430 0.1844 $0.6014(6)$ $0.5528(5)$ $0.3319(5)$ 0.5896 0.6283 0.3031

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ca1	0.0220 (4)	0.0305 (4)	0.0307 (4)	0.0046 (3)	0.0048 (3)	0.0083 (3)
Cl1	0.0708 (8)	0.0885 (10)	0.0633 (8)	0.0386 (7)	0.0216 (6)	0.0320 (7)
Cl2	0.0589 (7)	0.0549 (7)	0.0694 (8)	0.0096 (6)	-0.0128 (6)	-0.0008 (6)
N1	0.040 (2)	0.105 (3)	0.033 (2)	0.008 (2)	0.0044 (16)	0.013 (2)
N2	0.042 (2)	0.0327 (19)	0.083 (3)	0.0083 (16)	0.0124 (19)	0.0121 (18)
O1	0.0253 (13)	0.0476 (16)	0.0334 (14)	0.0041 (11)	0.0003 (11)	0.0036 (12)
O2	0.0246 (14)	0.077 (2)	0.0374 (15)	0.0034 (13)	0.0070 (11)	0.0061 (14)
O3	0.0299 (15)	0.0408 (16)	0.088 (2)	0.0111 (12)	0.0138 (14)	0.0274 (15)
O4	0.0327 (15)	0.0402 (15)	0.0632 (19)	-0.0010 (12)	0.0142 (13)	0.0149 (13)
05	0.0300 (14)	0.0340 (14)	0.0570 (17)	0.0060 (11)	0.0099 (12)	0.0119 (12)
O6	0.0371 (16)	0.089 (2)	0.0397 (16)	0.0195 (15)	0.0091 (13)	0.0113 (15)
C1	0.031 (2)	0.041 (2)	0.0295 (19)	0.0066 (16)	0.0028 (16)	0.0084 (16)
C2	0.031 (2)	0.070 (3)	0.034 (2)	0.0077 (19)	0.0065 (16)	0.009 (2)
C3	0.0250 (19)	0.057 (3)	0.033 (2)	0.0035 (17)	0.0048 (16)	0.0027 (18)
C4	0.060 (3)	0.068 (3)	0.045 (3)	0.017 (2)	0.011 (2)	0.005 (2)
C5	0.064 (3)	0.088 (4)	0.053 (3)	0.019 (3)	0.018 (3)	-0.012 (3)
C6	0.048 (3)	0.104 (4)	0.036 (3)	0.004 (3)	0.012 (2)	-0.005 (3)
C7	0.0277 (19)	0.0288 (19)	0.045 (2)	0.0062 (15)	0.0093 (16)	0.0057 (16)
C8	0.030 (2)	0.034 (2)	0.059 (3)	0.0058 (16)	0.0092 (18)	0.0109 (18)
С9	0.0230 (18)	0.033 (2)	0.047 (2)	0.0064 (15)	0.0110 (16)	0.0109 (17)
C10	0.043 (2)	0.044 (2)	0.060 (3)	0.0105 (19)	0.001 (2)	0.009 (2)
C11	0.067 (3)	0.057 (3)	0.056 (3)	0.019 (2)	-0.005 (2)	0.020 (2)
C12	0.056 (3)	0.048 (3)	0.082 (4)	0.014 (2)	0.010 (3)	0.029 (3)

Geometric parameters (Å, °)

Ca1—O4 ⁱ	2.366 (3)	O4—C7	1.241 (4)
Ca1—O5	2.373 (3)	O4—Ca1 ⁱ	2.366 (3)
Ca1—O1	2.375 (2)	O5—H5B	0.8499

Ca1—O3	2.391 (3)	O5—H5C	0.8500
Ca1—O6	2.393 (3)	O6—H6B	0.8501
Ca1—O2 ⁱⁱ	2.461 (3)	O6—H6C	0.8500
Ca1—O1 ⁱⁱ	2.641 (3)	C1—C3	1.511 (5)
Ca1—O4	2.734 (3)	C1—Ca1 ⁱⁱ	2.890 (4)
Ca1—C1 ⁱⁱ	2.890 (4)	C2—C3	1.375 (6)
Ca1—Ca1 ⁱ	4.0553 (14)	C3—C4	1.377 (6)
Ca1—Ca1 ⁱⁱ	4.0681 (14)	C4—C5	1.378 (6)
Ca1—H5B	2.7769	C4—H4	0.9300
Ca1—H5C	2.7764	C5—C6	1.357 (8)
Cl1—C2	1.737 (5)	С5—Н5	0.9300
Cl2—C8	1.729 (4)	С6—Н6	0.9300
N1—C2	1.323 (5)	С7—С9	1.501 (5)
N1—C6	1.332 (7)	C8—C9	1.391 (5)
N2—C8	1.317 (5)	C9—C10	1.378 (5)
N2—C12	1.336 (6)	C10—C11	1.372 (6)
01—C1	1.242 (4)	C10—H10	0.9300
O1—Ca1 ⁱⁱ	2.641 (3)	C11—C12	1.372 (7)
O2—C1	1.248 (4)	C11—H11	0.9300
O2—Ca1 ⁱⁱ	2.461 (3)	C12—H12	0.9300
O3—C7	1.241 (4)		
O4 ⁱ —Ca1—O5	85.90 (9)	О5—Са1—Н5С	16.8
O4 ⁱ —Ca1—O1	154.07 (10)	O1—Ca1—H5C	92.6
O5—Ca1—O1	76.49 (9)	O3—Ca1—H5C	155.0
O4 ⁱ —Ca1—O3	124.46 (9)	O6—Ca1—H5C	108.6
O5—Ca1—O3	148.15 (9)	O2 ⁱⁱ —Ca1—H5C	80.4
O1—Ca1—O3	77.33 (9)	O1 ⁱⁱ —Ca1—H5C	80.4
O4 ⁱ —Ca1—O6	79.48 (10)	O4—Ca1—H5C	144.2
O5—Ca1—O6	102.23 (10)	C1 ⁱⁱ —Ca1—H5C	80.4
O1—Ca1—O6	85.76 (9)	Ca1 ⁱ —Ca1—H5C	111.8
O3—Ca1—O6	93.57 (11)	Ca1 ⁱⁱ —Ca1—H5C	85.3
O4 ⁱ —Ca1—O2 ⁱⁱ	76.74 (9)	H5B—Ca1—H5C	28.7
O5—Ca1—O2 ⁱⁱ	93.19 (10)	C2—N1—C6	116.7 (4)
O1—Ca1—O2 ⁱⁱ	122.53 (9)	C8—N2—C12	117.9 (4)
O3—Ca1—O2 ⁱⁱ	85.84 (11)	C1—O1—Ca1	162.8 (2)
O6—Ca1—O2 ⁱⁱ	150.55 (10)	C1—O1—Ca1 ⁱⁱ	88.6 (2)
O4 ⁱ —Ca1—O1 ⁱⁱ	124.14 (9)	Ca1—O1—Ca1 ⁱⁱ	108.26 (9)
O5—Ca1—O1 ⁱⁱ	80.03 (9)	C1—O2—Ca1 ⁱⁱ	96.9 (2)
O1—Ca1—O1 ⁱⁱ	71.74 (9)	C7—O3—Ca1	101.6 (2)
O3—Ca1—O1 ⁱⁱ	74.78 (9)	C7—O4—Ca1 ⁱ	168.0 (3)
O6—Ca1—O1 ⁱⁱ	156.33 (9)	C7—O4—Ca1	85.3 (2)
O2 ⁱⁱ —Ca1—O1 ⁱⁱ	50.80 (8)	Ca1 ⁱ —O4—Ca1	105.13 (10)
O4 ⁱ —Ca1—O4	74.87 (10)	Ca1—O5—H5B	109.6

supplementary materials

O5—Ca1—O4	160.24 (9)	Ca1—O5—H5C	109.6
O1—Ca1—O4	123.16 (9)	H5B—O5—H5C	108.3
O3—Ca1—O4	49.89 (8)	Ca1—O6—H6B	110.5
06—Ca1—O4	79.04 (9)	Ca1—O6—H6C	110.5
O2 ⁿ —Ca1—O4	78.19 (10)	H6B—O6—H6C	108.8
O1 ^{II} —Ca1—O4	106.86 (8)	01—C1—02	123.5 (3)
O4 ⁱ —Ca1—C1 ⁱⁱ	100.91 (10)	O1—C1—C3	117.9 (3)
O5—Ca1—C1 ⁱⁱ	87.26 (10)	O2—C1—C3	118.5 (3)
O1—Ca1—C1 ⁱⁱ	97.14 (10)	O1—C1—Ca1 ⁱⁱ	65.98 (19)
O3—Ca1—C1 ⁱⁱ	78.32 (11)	O2—C1—Ca1 ⁱⁱ	57.69 (19)
O6—Ca1—C1 ⁱⁱ	170.49 (11)	C3—C1—Ca1 ⁱⁱ	175.5 (3)
O2 ⁱⁱ —Ca1—C1 ⁱⁱ	25.39 (9)	N1—C2—C3	125.2 (4)
O1 ⁱⁱ —Ca1—C1 ⁱⁱ	25.45 (9)	N1—C2—Cl1	115.4 (3)
O4—Ca1—C1 ⁱⁱ	91.86 (9)	C3—C2—Cl1	119.4 (3)
O4 ⁱ —Ca1—Ca1 ⁱ	40.60 (7)	C2—C3—C4	116.7 (4)
O5—Ca1—Ca1 ⁱ	126.35 (7)	C2—C3—C1	122.6 (4)
O1—Ca1—Ca1 ⁱ	153.30 (7)	C4—C3—C1	120.7 (4)
O3—Ca1—Ca1 ⁱ	84.02 (7)	C3—C4—C5	119.0 (5)
O6—Ca1—Ca1 ⁱ	76.43 (7)	С3—С4—Н4	120.5
O2 ⁱⁱ —Ca1—Ca1 ⁱ	74.23 (6)	С5—С4—Н4	120.5
O1 ⁱⁱ —Ca1—Ca1 ⁱ	121.53 (6)	C6—C5—C4	119.5 (5)
O4—Ca1—Ca1 ⁱ	34.28 (5)	С6—С5—Н5	120.3
C1 ⁱⁱ —Ca1—Ca1 ⁱ	97.60 (7)	С4—С5—Н5	120.3
O4 ⁱ —Ca1—Ca1 ⁱⁱ	152.81 (8)	N1—C6—C5	122.9 (4)
O5—Ca1—Ca1 ⁱⁱ	75.59 (6)	N1—C6—H6	118.5
O1—Ca1—Ca1 ⁱⁱ	38.06 (6)	С5—С6—Н6	118.5
O3—Ca1—Ca1 ⁱⁱ	72.63 (7)	O3—C7—O4	123.2 (3)
O6—Ca1—Ca1 ⁱⁱ	123.46 (8)	O3—C7—C9	118.2 (3)
O2 ⁱⁱ —Ca1—Ca1 ⁱⁱ	84.47 (6)	O4—C7—C9	118.6 (3)
O1 ⁱⁱ —Ca1—Ca1 ⁱⁱ	33.68 (5)	N2—C8—C9	124.5 (4)
O4— $Ca1$ — $Ca1$ ⁱⁱ	120.51 (6)	N2	114.9 (3)
Cl ⁱⁱ —Cal—Cal ⁱⁱ	59.09 (7)	C9—C8—C12	120.6 (3)
Cal ⁱ —Cal—Cal ⁱⁱ	149.45 (4)	C10—C9—C8	116.3 (3)
O4 ⁱ —Ca1—H5B	101.0	C10—C9—C7	120.2 (3)
O5—Ca1—H5B	16.8	C8—C9—C7	123.5 (3)
O1—Ca1—H5B	64.9	C11—C10—C9	120.0 (4)
O3—Ca1—H5B	131.5	C11—C10—H10	120.0
O6—Ca1—H5B	111.9	C9—C10—H10	120.0
O2 ⁱⁱ —Ca1—H5B	89.7	C10—C11—C12	119.2 (4)
O1 ⁱⁱ —Ca1—H5B	65.5	C10-C11-H11	120.4
O4—Ca1—H5B	167.8	C12—C11—H11	120.4
C1 ⁱⁱ —Ca1—H5B	77.5	N2-C12-C11	122.0 (4)

Ca1 ⁱ —Ca1—H5B	140.4	N2-C12-H12	119	9.0
Ca1 ⁱⁱ —Ca1—H5B	58.9	С11—С12—Н12	11	9.0
O4 ⁱ —Ca1—H5C	72.5			
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (ii) $-x+2$, $-y$, $-z+1$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O5—H5B···O3 ⁱⁱ	0.85	1.92	2.765 (3)	171
O5—H5C···N2 ⁱⁱⁱ	0.85	2.01	2.831 (3)	162
O6—H6B…N1 ^{iv}	0.85	2.07	2.919 (4)	173
$O6-H6C\cdots O2^{v}$	0.85	2.00	2.826 (3)	165
C6—H6···O5 ^{iv}	0.93	2.52	3.432 (4)	166

Symmetry codes: (ii) -*x*+2, -*y*, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) -*x*+2, -*y*, -*z*+2; (v) *x*-1, *y*, *z*.

C

NI

CI1

C1

01

01

03 C1

C12

C10

C12

C11

